Math 564: Advance Analysis 1

Lecture 20

Laberspece Difference the Theorem For each locally integrable first
$$\rightarrow$$
 IR Live first $\beta \in L'(R^d_{2,\lambda})$
for every bounded box B), we have:
 $f(x) = \int_{x_{i-1}} \int_{x_{i-1}$

Hardy-littlewood Maximal Theorem. Let h∈ L', d>0. Then d· λ (Δ_d (Ash)) ≤ 3 ((h)|_r. In Eact, d· λ (Δ_d (Āh)) ≤ 3^d || h||₁, there Āhlk) = sup Ar 1h, called the Hardy-Littlewood maximal function.

Given this, the proof is over by choosing
$$\delta := \frac{2 \cdot d}{43^d}$$
, hence then
 $\frac{d}{2} \cdot \lambda(A_{d/2} A_{*}(f-g)) \leq 3^d \|f-g\|_{1} < 3^d \cdot \delta, s_{2} = \frac{43^d}{43^d}$

<u>Report of Hardy-Littlewood Maximal Theorem</u>. For every $x \in A_d(\overline{A} h) = A_d(sep A_rh) =: A_g$ there is a radius $r_x \in [s,t]$. $[[h]d\lambda > d \cdot \lambda(Br_x)]$. Thus, thus $r \leq A$ is covered by the collection $Br_x(x)$ of balls $C := \{Br_x(x) : x \in A\}$. A the linearity of integrals and other actual being the linearity of integrals and other actual bare.

Vitali Covering Lemma. Let A = IPd a X-measurable set of positive nearme and let 2 be a cover at A with balls. For each a < X(A), 3 Ginite Ca = C of pairvise disjoint balls such ht $\sum X(B) \ge a/3^d$. BeCa

Proof. Let N be large enough sit. $\lambda(AAB_N) > a$. Thus we may assure A is bdd. By trightness (tor finite neasures), I compart K $\leq A$ sit. $\lambda(k) > a$. Thus, WLOG, we assure A is compact. Thus C has a finite subcover of A, so WLOG, we assure C is finite. Order C by radius of bells in decreasing order: B₁, B₂, B₃,... B_k.

We can a greedy algorithm and get a subsequence Ba, Bar Bas ... Ba where his i, has = the smallest s.t. Buz is disjoint from Bu, Na = the smallest s.t. Buz is disjoint from Bu, UBuz, etc. For a ball B centered at x, let B* := the bell centered at x of radius 3-radius (B). Then note that UBn: > VE = VB bene for each Bi where it n; Yj, isl Br: > VE = VB Bree for each Bi where it n; Yj, Bristis.t. Bi (Bn; # Ø: then Bi & Bnj. Back to maximal theorem. lifting a c & (A) be arbitrary, apply Vitali covering lumb to get a djujoint collection $C_a \in C$ set. $\sum \lambda(B) \neq \frac{1}{3d} \cdot a$. Beca Then $\|f\|_{1} \ge \int |f| d\lambda \gg \int (f| d\lambda = \sum \int |f| d\lambda > d \cdot \sum \lambda(B) = \frac{1}{3^{d}} \cdot d \cdot \alpha,$ $A \qquad Ue_{\alpha} \qquad Bee_{\alpha}B \qquad Bee_{\alpha}$